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1 Abstract 
We describe a project that analyzes the performance of a sensor network trying to detect 
enemy agents in an urban environment. We simulate a network of units that can detect 
different enemy types using a variety of sensors. Our work aims to address key issues 
about networked systems, including the effectiveness of cooperative strategies, the 
balance of multiple constraints, and the tradeoffs between resource allocation and 
performance. We make use of evolutionary computing algorithms to search the space of 
possible configurations, carrying out parameter sweeps to test how various dimensions of 
the design space impact performance over a range of scenarios. Our results provide some 
quantitative insights into the performance of networked systems. 

2 Overview 
The concepts of Network-Centric Warfare (NCW) and Network-Centric Operations 
(NCO) have been the target of significant interest in the last few years from the defense 
community (Cebrowski and Gartska, 1998; Alberts and Hayes, 2003). While there is 
general agreement that NCO holds great promise for military applications, many 
significant obstacles remain before these concepts can be fully deployed. 

Designing a system of networked military units presents significant challenges in terms 
of at least three key factors: (1) allocation of the appropriate resources; (2) integration of 
the various components in terms of their coordination, cooperation, command, and 
control in achieving a focused set of specific and cohesive goals; (3)  definition of the 
desired rules of behavior that are scalable and robust across a variety of scenarios and 
complex environments.  

The need to address all of these issues has lead to the high specialization of solutions and 
the consequent narrowing of their applicability, which is problematic in a complex and 
uncertain world. This problem permeates today’s military at all levels, from planning and 
design of military platforms to the implementation and execution of specific missions. 

The Wolf PAC initiative sponsored by the Naval Undersea Warfare Center (NUWC) in 
collaboration with the Office of Force Transformation addresses these problems by 
focusing on the design of distributed and adaptive systems that adequately serve the 
needs of Special Operation Forces operating in highly dynamic and unpredictable 
environments. As part of this initiative Icosystem Corporation has received support 
(contract N66604-05-0442) to explore the application of agent-based modeling (ABM) 
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and evolutionary computation (EC) as techniques for addressing the platform design and 
behavior analysis problems described above.  

In particular, we worked on the problem of resource allocation by exploring the tradeoffs 
that face the design of a robust distributed adaptive operation (DAO) network system for 
the military. The problem is examined in the context of using a set of networked military 
assets to detect, identify and track enemy units that traverse an environment. Specifically, 
we investigate the allocation and behavioral rules of multiple heterogeneous and 
distributed networked assets within a complex environment and limited budgets. This 
allows us to demonstrate the natural application of ABM and EC to both the problem of 
resource allocation and the problem of behavioral modeling.  

For this project, we have chosen to model a set of dispersed, networked units (smart dust 
agents) whose mission is to detect, identify, and track hostile agents in an urban 
environment using one or more sensor types. This simulation model is then used in an 
evolutionary framework to evolve and discover efficient allocation strategies of resources 
across friendly units and the appropriate rules for their cooperative behavior. 

The most significant aspect of this work is that we take into account several of the 
constraints that must be considered for deployment of a networked system. In a 
traditional sensor network approach, one might specify a given configuration of sensors 
(characteristics and layout) and try to find an optimal algorithm. However, that algorithm 
may be suboptimal (or fail miserably) as a result of changes in the sensors, in the network 
they form, or in the environment. In contrast, we look for strategies that consider 
simultaneously the following issues: 

• The types of sensors available 

• The sensor accuracy 

• The radius of communication between sensors 

• The way in which information is shared among sensors 

• The environment in which the sensors are operating 

The first three of these items jointly define the cost of deploying the networked units, 
while the last two determine how well a given configuration will perform. 

To study the tradeoffs between the cost of the resources that we employ and their overall 
performance as a system, we look at a set of experiments in which we manipulate three 
different dimensions: 

1. The available budget 

2. Whether or not the units cooperate 

3. The number of distinct enemy types 

By comparing the results across these dimensions, we found some performance patterns 
that hold across multiple scenarios. We summarize here some of our main findings. 

• In general, cooperating units outperform non-cooperating units 
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• Increasing available budget always results in a performance increase at any given 
level of scenario complexity 

• As the budget becomes unlimited, allowing for a large number of sensors with 
high accuracy, cooperation becomes unnecessary 

Before describing our model and the simulation results, we summarize our approach. 

2.1 Summary of the approach: Agent-Based Modeling 
For our simulation of the smart dust network and enemy agents, we use a modeling 
approach known as agent-based modeling (ABM). In this approach, systems are 
represented as collections of autonomous decision-making entities, called agents. Each 
agent individually assesses its situation and makes decisions based upon a set of 
behavioral rules. Agents may execute various behaviors appropriate for the system they 
represent – for example, producing, consuming, or selling. At the simplest level, an 
agent-based model consists of a system of agents and the relationships between them. 
Even a simple agent-based model can exhibit complex behavioral patterns (Epstein & 
Axtell, 1996; Bonabeau, 2000, 2002a, 2002b) and provide valuable insight about the 
dynamics of the real-world system that it emulates. 

The benefits of ABM over other modeling techniques can be captured in three 
statements: (1) agent-based modeling captures emergent phenomena; (2) agent-based 
modeling provides a natural description of complex systems; (3) agent-based modeling is 
flexible. While the ability of ABM to deal with emergent phenomena is the main driving 
force behind its success as a complex adaptive systems (CAS) tool, the fact that it 
provides a natural framework to describe complex systems combined with its flexibility 
makes ABM the tool of choice for the high-dimensional design space problems addressed 
in this project.  

2.2 Evolving robust systems 
The ability to model complex systems allows us to analyze and exploit their 
characteristics in a vastly improved manner. Experiments and various scenarios can be 
simulated to test solutions to our problems, while the extensibility and scalability of the 
ABM approach enables us to conveniently build on existing platforms. 

At the same time, the ability for accurate and easy representation of complex systems 
opens the door to high-dimensional design spaces. These design spaces are not amenable 
to exhaustive search. The requirement of robust solutions that are relevant in a variety of 
situations and scenarios complicates the task even further. Evolutionary algorithms 
address this problem by allowing for a highly efficient, automated search of vast design 
spaces. Evolutionary algorithms (EA) enable us to encode solutions in a deterministic 
way and evolve optimal instances based on the principle of natural evolution.  

Using ABM and EAs together allows us to explore the solutions of complex problems in 
the context of their natural setting. An agent-based model of the system in which a 
specific problem is addressed serves as a test bed for evaluating a proposed solution. The 
availability of an automated ABM simulation of the environment and the outcomes of the 
application of a particular strategy enables the use of EAs for the efficient, automated 
search of the problem design space. This approach requires that intervention rules are 
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designed as elemental building blocks that can be meaningfully recombined and adjusted 
through evolutionary mechanisms such as Genetic Algorithms (Goldberg, 1989; Forrest, 
1993). With evolutionary algorithms, robustness can be made an integral part of the 
search process. 

3 Model description 
To address the problem of resource allocation and military asset coordination we 
designed a framework that consist of two main components: an agent-based model that 
simulates the behavior of the system at hand, and an evolutionary algorithm that uses the 
model as a test bed for evaluating and evolving resource allocation and behavioral (i.e., 
command and control) rules for networked assets.  In addition, the simulation explicitly 
models enemy agents and the environment in which the scenario takes place. 

3.1 The agent-based model 
For the purpose of illustrating the applicability of agent-based modeling and evolutionary 
computation to the problem of military resource allocation and coordination in complex 
environments we consider a specific problem in a simulated environment. In particular, 
we look at the problem of distributing resources within a sensor network on the 
battlefield, and designing rules for coordination and information sharing between nodes. 

The system under consideration consists of three major components: a complex 
environment, a set of heterogeneous ‘Smart Dust’- like friendly agents, and a set of 
heterogeneous enemy agents. The configuration of the environment, the characteristics of 
the available friendly agent types, and the configuration of the enemy agents are provided 
to the model as input. We then simulate the detection, identification and tracking of 
enemy agents that traverse the environment. The model provides as its main output the 
cost required to select and equip the friendly agents and the performance of the system in 
terms of its ability to detect enemy agents. 

The interaction between enemy and friendly agents is based on the detection of signals. 
Enemy agents emit different kinds of signals, e.g. sound, chemical, heat, vibration, etc., 
while the smart dust agents have a suite of on-board sensors that have the ability to detect 
these types of signals in order to detect and identify the source and its type. 

3.1.1 The simulated environment 
The environment is a simplified two-dimensional urban grid of a preset, configurable 
size. The map is generated using a stochastic algorithm that ensures the resulting map is 
randomly created, but still follows a consistent pattern that resembles the layout of a city 
to a degree sufficient for our purposes. Figure 1 displays a sample map of a simulated 
urban environment, with friendly agents randomly spread throughout the environment 
(displayed as white dots). Enemy units traverse the environment by following a sequence 
of waypoints, which are shown in Fig. 1 as red dots connected by gray lines. 
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Figure 1: A sample urban map 

The algorithm for generating the maps splits the area into a grid, where each cell contains 
a city block. The algorithm loops through all cells and creates a city block that is either 
horizontal or vertical. The probability for placing a vertical block is calculated by a 
sinusoidal function that depends on the number of the cell that the block is being placed 
in. This ensures local consistency with small variations, with changes from 
predominantly vertical to predominantly horizontal blocks on the bigger scale. 

In addition, a parameter determines the probability that a block will extend to connect to 
its neighboring blocks in order to make continuous blocks that create more convoluted 
paths around the city. This parameter may be used to increase or decrease the 
connectivity of the maps that are being generated. 

3.1.2 Enemy Agents 
Enemy agents traverse the environment by selecting starting points and destinations at 
random. They plan their routes by following the shortest path to their destination. There 
may be more than one enemy agent at a time, which the network of smart dust units is 
trying to detect and track. 

Enemy agents are differentiated by the types of signals that they emit. They emit different 
signals like motion, heat, chemical, etc., with different intensity, thereby requiring 
different types of sensory equipment for detection. The set of signals that an enemy agent 
emits defines its signature, which is used for identification by the smart dust agents. 

For simplicity we have limited the total number of different signals to three, which 
provides for seven different enemy signatures (each signal type can be emitted or not 
emitted by an enemy, and we exclude the case that no signals at all are emitted). Each 
type of enemy agent is further characterized by the speed with which it moves through 
the environment, and by how far its signals are emanated. For instance, a single enemy 
soldier may emit sound only, move slowly, and its sound signal may only be detectable 
from a short distance. Details of the enemy agent types and characteristics are provided in 
a later section. 
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3.1.3 Smart Dust Agents 
Smart dust agents perform detection, identification, and tracking of enemy agents. To 
perform detection smart dust agents use an array of sensors and cooperate with each 
other. Each sensor has the ability to detect a specific type of signal with certain accuracy. 
This means that the sensors are imperfect, having a probability of reporting that a signal 
is present when it isn’t (false positive), as well as reporting that it is not present when it is 
(false negative).  

All smart dust agents have the ability to produce a predictive indication for each of the 
existing enemy types and have the same radius of communication. Their heterogeneity is 
found in the array of available sensor types that they have on board. There is a fixed set 
of available sensor types (one for each existing signal type) but smart dust agents are 
assigned sensors at random with the goal of reaching a certain specified density for each 
sensor type in the population of all smart dust agents. 

The density for each sensor type is provided as input for the simulation. This is a number 
in the [0…1] interval and denotes the percentage of all smart dust agents that should have 
this particular sensor type on board. This means that some agents will have all possible 
sensors on board, while others will have just two, one, or even no sensors at all. 
Nevertheless, every agent is capable of calculating a detection reading about whether a 
particular kind of enemy is in the vicinity or not, as mentioned earlier.  

Detection readings range in the [-1…1] interval in a continuous fashion. A positive 
measurement indicates that an enemy agent of the particular type is detected in the area, 
while a negative value indicates that there is no enemy agent of that type in the vicinity. 
The determination of presence or absence of a signal is based on the sign of the reading, 
while the actual magnitude corresponds to certainty. The more positive the reading is, the 
longer it would take for it to be reduced down to the negative range. On the other hand, if 
the detection reading is slightly above zero, it can quickly be turned into the negative 
zone. Going from negative to positive follows an analogous process. 

Information about every possible signal type is required for the unambiguous 
determination of whether a particular enemy type is present or not. If the information is 
incomplete, then it can be impossible to confirm or exclude the possibility that a 
particular enemy type is in the vicinity.  

The ability of smart dust agents to produce detection readings even without a full set of 
sensors is achieved through cooperation. Smart dust agents are aware of other smart dust 
agents within their communications range and share information with one another. The 
information that is being shared between agents is on the level of sensor readings. In a 
way, smart dust agents that are missing a particular sensor can simply use the sensor 
reading from their neighbor. When more than one sensor reading for the same signal type 
is available, the information is aggregated to produce a more accurate reading. Figure 2 
illustrates the flow of information between two neighboring smart dust agents. 
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Figure 2: Information sharing between smart dust agents 

As Fig 2 shows each smart dust agent has a detection reading for every enemy type. An 
enemy type reading indicates the certainty of the particular smart dust agent that an 
enemy agent of the type is present in the vicinity. This reading is a function of two sets of 
inputs. First, the reading takes into account its own previous value, in order to take 
advantage of its previous knowledge. Second, the information from the agent’s own 
sensors is added. In other words, information is integrated both spatially and temporally. 

Each sensor produces a measurement indicating whether a certain type of signal is 
presently being detected or not. This is used to determine whether the signature of the 
particular enemy type is recognized and the final reading is calculated appropriately. In 
order to recognize the full signature of an enemy agent however, signal information for 
every signal type is required. When an agent is missing a sensor type it cannot produce a 
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full set of signal readings. This problem can be overcome if neighboring smart dust 
agents share sensor information as illustrated in Fig 2. 

Regardless of whether an agent has a full set of sensors, it always maintains a virtual 
reading for every possible sensor. When there are neighbors around, their sensor 
information is used to fill in the blanks and aid the existing sensors. The red arrows in Fig 
2 show the flow of information between the two agents, while the blue arrows show the 
flow of information inside each agent. 

The sharing of sensor information is the essence of cooperative behavior demonstrated in 
the model. In order to make any definitive decisions, the smart dust agent requires 
information about all signal types. When it is missing a sensor for a particular signal type, 
the smart dust agent needs to rely on the sensor readings of its neighbors. 

Sensory information is integrated both spatially and temporally. In the spatial domain, 
when multiple readings are available for a given sensor type, a majority voting rule is 
used to determine whether a signal is present or absent. Once the multiple readings have 
been aggregated in this fashion, information is further integrated in time. To this end, we 
use a standard leaky integrator formalism. The leaky integrator balances the relative 
contribution of its past activation level against the contribution of the current signal 
(aggregated through majority voting). By modifying the relative contribution of these two 
terms (past activation level and new inputs), the smart dust agent can be adaptively tuned 
to reflect the quality of the sensory information: in the presence of a lot of noise, 
integration over longer time periods can reduce some of the noise; on the other hand if 
the sensory information is highly accurate, there is less need for temporal integration. 

Finally, each smart dust agent aggregates information from all three sensor types in order 
to determine whether a particular enemy type is present (see Figure 2). At this stage we 
presume that each agent is “hard-wired” to identify three types of enemies. By adjusting 
the weights from each aggregated sensory node to the enemy detection nodes, the agents 
can discriminate between different enemy types. 

3.2 The Evolutionary Algorithm 
As should be apparent from the description in the last section, our model exhibits a high 
degree of complexity and a large number of parameters. A brute force parameter sweep 
to find optimal performance under all possible scenarios is infeasible. However, we can 
leverage a technique known as evolutionary computing to perform a guided, global 
search of the design space. 

We employ a genetic algorithm, or GA (Goldberg, 1989), which is a type of evolutionary 
algorithm, to navigate the design search space for our problem and to demonstrate the 
effectiveness of evolutionary algorithms in combination with agent-based models for 
solving complex problems. 

The GA is designed to minimize a cost function that captures a combination of the budget 
and performance. The GA manipulates the communications range of the smart dust units, 
the sensor characteristics (accuracy and density) and the algorithm for detection (by 
modifying the parameters for spatial and temporal integration of information). 
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There are two essential parts to a genetic algorithm that define its purpose and method of 
search. These are (1) the representation being used to encode candidate solutions and (2) 
the fitness function that is used to evaluate them. In addition, a set of genetic operators is 
provided to modify and expand the set of potential solutions that seem to be successful 
according to the fitness function evaluations. We look at each of these in turn. 

3.2.1 Chromosome representation 
The chromosome of the GA contains all the building blocks to a solution of the problem 
at hand in a form that is suitable for the genetic operators and the fitness function. The 
building blocks that define the characteristics and behavior of the smart dust agents are 
captured in four sets of genes. 

First, we need to discover an appropriate range of communication between smart dust 
agents. This value can be captured by a single floating point number that varies between 
zero and a maximum allowable radius. 

Second, we are looking for the appropriate density of each available sensor type across 
the population of smart dust agents. The density of each sensor type can be represented as 
a floating point number in the range [0…1]. We need one such gene for each of the three 
different sensor types. 

Third, we include the accuracy of each sensor type. Its representation is analogous to that 
of the density as we need a separate gene for each available sensor type. The range of 
acceptable values, however, varies in the interval [0.5…1.0]. The low boundary is at 0.5 
as this represents 50% accuracy. Any accuracy less than 50% results in a worse 
prediction than that of the flip of a coin. 

The fourth gene encodes the behavior of the detection algorithm by specifying a set of 
weights for each agent. As described earlier, each agent accumulates information about 
all three possible enemy types. For each enemy type, we specify two weights: the 
contribution of the sensory input, and the contribution of past activation levels (which 
implicitly defines the decay rate of the leaky integrator). The decay rate (δj) and the 
coefficient for the sensor input (σj) are in the range [0…1]. 

As mentioned earlier, there is a cost associated with resources. In order to optimize the 
performance of the system within a certain budget we have to enforce a budget limit on 
the chromosome that is being evolved. This, in turn, requires that we define the cost of a 
given configuration. We calculate total cost using the following equation: 

Cost = C 1

1−
r

2 * Rmax

+ S di
1

1− ai

SENSORS

∑  (1) 

In this equation, the cost function has two main terms: the first term reflects the cost of 
communications; the second term reflects the cost of sensor accuracy and density. The 
significance of the two terms can be adjusted through the weight coefficients C and S. We 
now explain each term of the equation: 
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• The cost of communications is proportional to the radius r is normalized by the 
maximum possible radius Rmax, and is bounded to values between C and 2*C. 

• The cost of sensory quality is summed across all sensors, and it combines the cost 
of increased density di (which is linearly related to the number of sensors) and the 
cost of increased accuracy ai. The accuracy ai ranges between 0.5 and 1, and as it 
approaches perfect values, the cost quickly becomes infinite. 

Every chromosome in the GA population is checked to ensure that the limited budget 
constraint is met. The radius, the accuracy, and the density are allowed to vary freely, but 
their total cost must remain within the specified maximum budget. This constraint is 
enforced at all times during the genetic search. If a given chromosome results in a cost 
that exceeds the budget, the values of di , ai  and r are gradually reduced until the budget 
constraint is satisfied. 
 

r d1 ... dn a1 ... an δ1,σ1 ... δm,σm 
Table 1: Structure of the chromosome used for the GA 

Table 1 depicts the general form of the chromosome used in our GA. In all experiments 
reported below we use three sensor types (n = 3) and a variable number of enemy types 
for different experiments (m = 1, 2 or 3). This means that for different experiments there 
will be a different number of genes in the chromosome. 

3.2.2 The fitness function 
The fitness function is used to evaluate candidate solutions by comparing the 
performance that results from using a particular chromosome. Our fitness function for an 
individual i includes terms that measure how well the system detects, identifies and tracks 
enemy agents, according to the following equation: 

Fi = max P −
1

ETP

+
1

1− ETP
4

 

 
  

 

 
  ,  N −

1
ETN

+
1

1− ETN
4

 

 
  

 

 
  

 

 
 
 

 

 
 
 

 (2) 

In our GA we consider a lower value of Fi to correspond to better fitness. As shown in 
Eq. (2), the fitness function has two main terms: the first term reflects the performance in 
terms of the error rate in correctly identifying enemy agents when they are really there 
(true positives); the second term reflects performance in terms of the error rate in 
correctly indicating that an enemy agent is not present when it is really not there (true 
negatives). The coefficients P and N can be used to conveniently adjust the fitness 
function by giving more significance to the desired term. 

Both error terms are calculated as an average over all smart dust agents over an entire 
simulation, which is set up with the selected communications range, accuracies, and 
densities. The error varies in the range [0...1], but the two different terms ensure that 
there is a significant benefit for small errors, as well as a big penalty for large errors.  

As the error becomes large, the 1/(1-x) expression makes the sum quickly become 
infinite. On the other hand, the smaller the error is, the more negative the expression 
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becomes because of the (-1/x) term. Finally, we take the larger of the two errors in order 
to ensure that the chromosome is given the larger penalty of the two and to ensure that 
the true positive and true negative error terms do not cancel each other in the extremes. 

4 Experiments and results 
The main goals of this project are (1) to expose the complexity of the design space for 
resource allocation and behavioral coordination problems, (2) to demonstrate the 
effective application of agent-based modeling and evolutionary computation to this type 
of problem, and (3) to support the argument that cooperation between distributed, 
networked units can be beneficial in complex situations. In order to pursue these points, 
we devised a set of experiments that explore three key dimensions: the complexity of the 
enemy forces, the cost of the sensor network and the level of cooperation among 
networked units. 

4.1 Enemy types 
As explained earlier, our smart dust units can be equipped with sensors of three different 
modalities. We define different enemy agent types by the combination of signals that they 
emit. Having three different signal types allows for a total of seven different enemy types 
(assuming that each enemy type can emit one, two or all three signal types). In our 
experiments we define three enemy types, set up in three different configurations of 
increasing complexity. The three different signals that we have are sound, chemical, and 
vibration. Table 2 lists the three different enemy types that we use. 

Enemy type Signals emitted 

Single Soldier Sound 

Car Bomb Sound, Chemical 

Truck Bomb Sound, Chemical, Vibration 
Table 2: Enemy types 

The three enemy types are designed in a way that they have overlapping signal 
signatures, which leads to increased complexity when they are present in the world at the 
same time. We use these enemy types in three different combinations for our 
experiments. Table 3 lists the three scenarios. 

Scenario Enemy Types Enabled 

1 Single Soldier 

2 Single Soldier, Car Bomb 

3 Single Soldier, Car Bomb, Truck Bomb 
Table 3: Enemy type combination scenarios 

When we run a simulation in scenario 1, the only enemy type that exists is the Single 
Soldier. This is our base case scenario, where we have one enemy type that emits one 
signal type. Scenarios 2 and 3 are of greater complexity because there are two and three 
enemy types respectively that exist in the world, and at the same time the additional 
enemy types have more signals in their signatures. The complexity comes from the fact 
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that we not only have to recognize more enemy types individually, but are also facing the 
situation of two or more different enemy types being in the same place at the same time. 
Because the different enemy types have overlapping signatures, it becomes harder to 
determine what enemy type is actually present. 

4.2 Budget limits 
For each scenarios we can run a GA to optimize the configuration of the smart dust 
agents. We perform that optimization for five different budget limits per scenario. The 
five budget limits are derived from five base cases for the density and accuracy of the 
available signal sensors. We calculate the cost when all three signal sensors have a 100% 
density with an accuracy of 60%, 70%, 80%, and 90%. The resulting costs (calculated 
from Eq.1) are the first four budget limits that we use. The last budget limit value is a 
large value, which represents the case of a practically unlimited budget. Table 4 lists the 
five budget limits. 

Calculated for sensor 
accuracy of 

Budget Limit 

60% 7.5 

70% 10 

80% 15 

90% 30 

- 100000 
Table 4: Budget limits 

The budget limits in Table 4 are calculated for a density of 100% and the specified 
accuracy. However, the GA is free to vary the communication range, the density, and the 
accuracy in any way, as long as the combined cost does not exceed the budget limit. 

4.3 Level of cooperation 
In our model the level of cooperation is determined intrinsically through the weights 
connecting neighboring smart dust units, which are evolved by the GA. However, we 
decided as a fourth dimension to explore the impact of preventing cooperation altogether. 
Hence for each scenario we can choose to set cooperation to zero, in which case there 
will be no cooperation at all between units. If the cooperation is non-zero, we let the GA 
determine the level of cooperation. 

4.4 Summary of scenarios and GA setup 
By considering all possible combinations of the three search dimensions just described 
(enemy complexity, budget limit, cooperation level), we have a total of 30 distinct 
experiments. Table 5 summarizes the values that each of the key parameters can take. 

Cooperation Scenarios Budget Limits Total 

On, Off 1,2,3 7.5,10,15,30,100000 30 
Table 5: Summary of experiments 
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For each experiment we run the GA to find a smart dust agent configuration that has the 
highest performance possible within the specified budget. In each case the GA 
parameters are identical and their values are listed in Table 6. 

 

Parameter Value 

Population size 50 

Number of generations 30 

Elite size 10 

Crossover probability 0.6 

Crossover points 2 

Mutation probability 0.2 
Table 6: GA parameters 

The termination criterion for all GA runs is the number of generations. Each run is 
stopped after 30 generations and the best individual at this point is taken as the result for 
analysis. In addition, each of the 30 experiments is repeated 10 times with a set of 10 
different random seeds to obtain a better estimate of the result after exactly 30 
generations. All results below show the average and standard error of the mean over the 
10 runs for each condition. 

4.5 Results and analysis: system performance 
To analyze our simulation results, we present three figures, one for each of the three 
enemy type scenarios listed in Table 3. We first look at the results from scenario 1 
simulation runs in Fig. 3. 

 
Figure 3: Performance under scenario 1 
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Figure 3 displays two curves – one for simulation runs with cooperation enabled (green 
line with circles) and one for simulation runs with cooperation disabled (blue line with 
diamonds). Each curve has five data points for the five different budget limits. The X-
axis shows the budget limit for the particular GA run, while the Y-axis shows the error in 
the performance of the best individual after 30 generations. Each point is the average of 
ten runs with ten different random seeds. The plot includes error bars for each point, 
representing the standard error of the mean. Because of the simplicity of this world, the 
error bars in this plot are not visible as they fall entirely within the symbols drawn at each 
point. The error bars will become evident in subsequent results. 

Scenario 1 is our base case scenario where we have only one enemy type that emits one 
signal. As evident from Fig 3, in both cases we have a consistent reduction in the error 
with the increase of the budget limit. It is interesting to note that in this scenario, 
cooperation seems to have a positive impact only at the lowest budget levels. At higher 
levels the cooperation seems to have little impact.  

On the other hand, simulation runs under scenarios 2 and 3 show a consistent advantage 
in using cooperative agents, as show in Figures 4 and 5. For all five budget limits under 
scenario 2 (Fig. 4) the GA manages to find better solutions when it has the option of 
using cooperation. Under scenario 3, we see a significant improvement for the 
cooperative system for the higher budgets (Fig. 5). This suggests that for the more 
complex scenarios we get increased performance by using cooperation. 

Figure 4: Performance under scenario 2 Figure 5: No city block connectivity, scenario 3 
It is useful to compare the simulation runs across the three different scenarios. Figures 6 
and 7 compare the performance of configurations with cooperation across the different 
scenarios as well as configurations without cooperation. Figure 6 clearly shows that for 
the two more complex scenarios the GA had a hard time finding solutions that bring the 
error down even for the higher budget limits when there was no cooperation between 
nodes. On the other hand, in Fig 7 we see that there is a consistent decrease in the error as 
the budget increases for all three scenarios. 

It should also be noted from Figs. 6 and 7 that the curves for scenarios of increasing 
enemy complexity tend to be consistently on top (higher error). This suggests that our 
method of representing enemies does in fact result in added complexity. Nonetheless, the 
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GA manages to find consistently better solutions when cooperation is available, or when 
the budget limit is being increased. 

 

 
Figure 6: Performance with no cooperation 

 
Figure 7: Performance with cooperation 

Another interesting point is the S-shaped nature of the Scenario 3 curve in Fig. 7. This 
type of nonlinear change in behavior is typical of complex systems. In a realistic system 
the sharp drop is extremely useful in identifying “tipping points” in the system. In this 
case, for example, we can tell that increasing the budget from 10 to 15 has a much greater 
impact than, say increasing budget from 30 to 45. The ability to find tipping points is a 
key driver of success in the analysis of complex systems of this type.  

Finally, we notice from Figs. 6 and 7 that the standard error increases as the complexity 
of the scenario increases and the budget limit increases. This probably reflects the fact 
that the GA needs more time to converge to similar solutions when the problem space is 
larger, which is natural and is expected. The complexity of the scenario and the budget 
limit are both factors that increase the search space. In the same vein, the standard error 
grows for non-cooperative simulations, which implies that the search for cooperative 
solutions converges faster. 

4.6 Analysis of the evolved chromosomes 
In this section we look at the actual values of the chromosome that were evolved in the 
experiments described above. The purpose of this analysis is to demonstrate the 
connection between the actual gene values (genotype) and the resulting behavior 
(phenotype), as well as to verify the interpretation of the chromosome representation. 

4.6.1 Communications range 
We first look at the gene for the communication range (radius) r. Each plot in Fig. 8 
shows the results broken down by scenario, while cooperative and non-cooperative 
simulations are split into separate plots. The x-axis shows the increasing budget limit, 
while the y-axis has the average gene value for the particular case. 
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Figure 8: Communication radius gene values 

Not surprisingly, for all runs where cooperation is disabled, the communications range is 
always zero. In the case where cooperation is enabled, however, we observe an 
interesting pattern: there is a decrease in the preferred communications radius with 
increasing budget in all cases except for the low budget cases under scenario 3. The 
decreasing trend is explained with the fact that as the budget increases, so does the ability 
to use more precise sensors or more numerous sensors. Hence, by allowing for greater 
sensor accuracy and density we need fewer neighbors to share information. 

After closer inspection, we find that under scenario 3 at the lowest budget, three out of 
ten GA runs found a solution that sets the communication radius to zero. In other words, 
event though the GA has the option of using cooperation, in three of ten runs it found a 
solution that does not use cooperation. It would seem that the GA has found a local 
minimum similar to those discovered when cooperation is disabled. At the budget limit of 
10, the GA used zero connectivity in only one out of ten runs. It is possible that running 
the GA for a larger number of generations might have allowed the GA to enforce 
cooperation in all ten runs under all budget levels. However, we did not test this in order 
to maintain consistency across all experiments, without requiring excessive 
computational time. 

4.6.2 Sensor density and accuracy 
Next, we look at the sensor density and accuracy genes. As mentioned earlier, there is 
one gene for the density of each available sensor type (sound, chemical, vibration). For 
space considerations we report here only the analysis of one sensor type (sound sensor). 
The results for other sensor types, which did not vary significantly from those reported 
here, will be reported in a later, full-length report. 

As shown in Fig. 9, we find an increase in density with increasing budget, which is the 
expected behavior, since more money implies the ability to purchase more sensors. The 
pattern of increase, however, is different for the non-cooperative and cooperative 
systems. In the non-cooperative case (Fig. 9, left), there is a systematic decrease in sensor 
density as the complexity of the scenario increases. In contrast, in the cooperative case 
the three curves representing three difference scenarios do not differ significantly. 
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Figure 9: Sound sensor density gene values 

Before trying to explain the strong dependence of sensor density on scenario complexity 
in the non-cooperative case, it is useful to examine the accuracy gene for the same 
conditions. The results are shown in Fig. 10. 

 
Figure 10: Sound sensor accuracy gene values 

We see in Fig. 10 that the accuracy is always fairly high, with all but one of the points in 
excess of 70%. Because of the hyperbolic form of the sensitivity term in Eq. 1, the 
overall cost depends much more on accuracy than on sensitivity: even a slight increase in 
accuracy requires a dramatic decrease in density, an effect that is dramatically 
emphasized as accuracy approaches 100%. In the cooperative case, it is possible to 
decrease density without having much impact on performance, because smart dust units 
can collect information from their neighbors. In the non-cooperative case, increasing 
sensor accuracy is required because there are no neighbors to compensate for missing 
sensors – but this in turn requires further reductions in density. 
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By being able to maintain lower densities, cooperative systems can afford to have fewer, 
but more accurate sensors and this enables them to be effective even within lower 
budgets. 

Finally, we have analyzed the genes that characterize the leaky integrators for the 
separate enemy types. As described earlier, there are two genes for each leaky integrator, 
which jointly characterize the dynamics of the response to sensory inputs. When we 
analyzed the combined effect of the two genes for each type of enemy, we saw fairly 
consistent values across all scenarios, so we do not report them here. The likely reason 
for this is that in the current study we presumed that all enemies move at the same speed, 
and that the signals they emit propagate to a fixed radius that is the same for all enemy 
types. Had we selected different speeds or signal propagation radii for different enemy 
types, it is likely that the GA would have evolved specialized sensors with different time 
constants. 

5 Discussion and future work 
The goal of this project was to contribute to a general understanding of network-centric 
systems and operations. We focused on the problem of designing a network-centric 
system in which we must simultaneously account for issues of resource allocation and 
system behavior and performance. While our results are preliminary, they already offer 
significant insights into network-centric operations. 

Network-centric systems of the type described in this paper can be viewed simply as a 
specific instantiation of distributed systems. Some of the same theoretical analyses that 
apply to other types of complex systems can be applied to network-centric operations 
(e.g., Perry et al., 2002; Moffatt, 2003). We agree with these authors that developing a 
quantitative understanding of the performance of network-centric systems is going to be 
critical to their successful adoption in the military and in other contexts. 

Our group has previously tackled projects of distributed computing and swarm 
intelligence that share a number of characteristics with the work described here. In one 
project, we developed distributed control algorithms for swarms of unmanned air vehicles 
performing search or SEAD missions (Gaudiano et al., 2003) and swarms of robots 
performing exploration and mapping functions (Rothermich et al., 2004). In all cases, two 
central tenets of our research have been (1) the development of decentralized algorithms 
for distributed, collaborative systems, and (2) the use of quantitative techniques including 
both computer simulation and mathematical analysis to understand and analyze the 
function of distributed systems. 

The work we described makes novel inroads into our understanding of distributed 
command and control. We believe the most significant contribution of our work is that 
we are considering simultaneously two key issues that impact performance: the amount 
of available resources, and the algorithms used to perform distributed operations. Most of 
the work with which we are familiar tends to focus only on one of these problems. For 
instance, in the context of sensor networks, there are many algorithms to deploy sensors 
in an environment, to share information between sensors, or to control the amount of 
energy spent in performing operations. However, it is unclear how these results would 
generalize if additional constraints were taken into account. 
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Clearly, our own work is only embryonic in nature. Our initial experiments have raised 
more questions than they have answered. Nonetheless, we have already made some 
significant findings, first and foremost by showing that it is possible to take multiple 
types of constraints into account, and secondly by providing some quantitative results and 
analyses of the performance of networked systems. Among our more interesting results, 
we found that cooperation among networked units is beneficial, especially when 
resources are heavily constrained, or for scenarios of increasing complexity. While we 
are not the first to make this claim, we have found surprisingly little work that provides a 
quantitative verification of these claims often made for distributed C2 systems or 
network-centric systems. 

We have already begun to extend the work presented here. For example, we recently 
developed an algorithm to modulate the complexity of the urban environment in which 
the sensor network is operating. These and other extensions will be the subject of future 
publications. 
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